Human exposure to flame-retardants is associated with aberrant DNA methylation at imprinted genes in sperm
نویسندگان
چکیده
Emerging evidence suggests that early exposure to endocrine disrupting chemicals has long-term consequences that can influence disease risk in offspring. During gametogenesis, imprinted genes are reasonable epigenetic targets with the ability to retain and transfer environmental messages. We hypothesized that exposures to organophosphate (OP) flame-retardants can alter DNA methylation in human sperm cells affecting offspring's health. Sperm and urine samples were collected from 67 men in North Carolina, USA. Urinary metabolites of a chlorinated OP, tris(1,3-dichloro-2-propyl) phosphate, and two non-chlorinated OPs, triphenyl phosphate and mono-isopropylphenyl diphenyl phosphate, were measured using liquid-chromatography tandem mass-spectrometry. Sperm DNA methylation at multiple CpG sites of the regulatory differentially methylated regions (DMRs) of imprinted genes GRB10, H19, IGF2, MEG3, NDN, NNAT, PEG1/MEST, PEG3, PLAGL1, SNRPN, and SGCE/PEG10 was quantified using bisulfite pyrosequencing. Regression models were used to determine potential associations between OP concentrations and DNA methylation. We found that men with higher concentrations of urinary OP metabolites, known to originate from flame-retardants, have a slightly higher fraction of sperm cells that are aberrantly methylated. After adjusting for age, obesity-status and multiple testing, exposure to mono-isopropylphenyl diphenyl phosphate was significantly related to hypermethylation at the MEG3, NDN, SNRPN DMRs. Exposure to triphenyl phosphate was associated with hypermethylation at the GRB10 DMR; and tris(1,3-dichloro-2-propyl) phosphate exposure was associated with altered methylation at the MEG3 and H19 DMRs. Although measured methylation differences were small, implications for public health can be substantial. Interestingly, our data indicated that a multiplicity of OPs in the human body is associated with increased DNA methylation aberrancies in sperm, compared to exposure to few OPs. Further research is required in larger study populations to determine if our findings can be generalized.
منابع مشابه
Epigenetic germline mosaicism in infertile men.
Imprinted genes are expressed either from the paternal or the maternal allele, because the other allele has been silenced in the mother's or father's germline. Imprints are characterized by DNA methylation at cytosine phosphate guanine sites. Recently, abnormal sperm parameters and male infertility have been linked to aberrant methylation patterns of imprinted genes in sperm DNA. However, these...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملTransgenerational Epigenetic Imprinting of the Male Germline by Endocrine Disruptor Exposure during Gonadal Sex Determination
Embryonic exposure to the endocrine disruptor vinclozolin at the time of gonadal sex determination was previously found to promote transgenerational disease states. The actions of vinclozolin appear to be due to epigenetic alterations in the male germline that are transmitted to subsequent generations. Analysis of the transgenerational epigenetic effects on the male germline (i.e. sperm) identi...
متن کاملUnaltered imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle culture under variable follicle-stimulating hormone exposure.
Imprinted genes are differentially methylated during gametogenesis to allow parental-specific monoallelic expression of genes. During mouse oogenesis, DNA methylation at imprinted genes is established during the transition from primordial to antral follicle stages. Studies in human and mouse suggest aberrant imprinting in oocytes following in vitro maturation and after superovulation with high ...
متن کاملRetraction. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination.
Embryonic exposure to the endocrine disruptor vinclozolin at the time of gonadal sex determination was previously found to promote transgenerational disease states. The actions of vinclozolin appear to be due to epigenetic alterations in the male germline that are transmitted to subsequent generations. Analysis of the transgenerational epigenetic effects on the male germline (i.e. sperm) identi...
متن کامل